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The problem of nonisothermal gas motion in a plane channel is considered for 
arbitrary values of the Knudsen number on the base of an S-model kinetic equa- 
tion. 

The rigorous theory of rarefied gas motion in channels for arbitrary values of the 
Knudsen number (Kn) can be constructed only on the basis of the solution of the Boltzmann 
kinetic equation or its models. Such solutions have been published in [I-6] in the case of 
a plane channel. The results obtained on the basis of the BGK model [;,2] need substantial 
refinement since this model does not describe the phenomena related to the simultaneous heat 
and mass transfer. An integral form of the kinetic equation with an ellipsoidal statistical 
model of the intermolecular collisions was used in [3,6]; results are obtained for iterations 
of the moment solution [3] and a variational Galerkin method [6]. The solution of the com- 
plete Boltzmann equation by the Monte Carlo method [4] differs substantially from all exis- 
ting results, which is apparently due to the increase in the calculation error when taking 
account of intermolecular collisions. The Boltzmann equation is solved in [5] by the method 
of half-space moments in a third approximation. Since the moment method converges quite 
slowly for Fan > I, the results obtained are reliable only for Kn ~ I. 

The problem of nonisothermal rarefied gas motion in a plane channel is solved in this 
paper on the basis of an S-model equation [7], which is a higher-order approximation com- 
pared to the BGK model. The purpose of the paper is, firstly, to obtain the correct solution 
of the problem in the whole range of values of the number Kn, secondly, to compare the re- 
sults for different statistical models of the intermolecular collision operator, and thirdly, 
to estimate the effectiveness of the approximate methods of solving the transport integral 
equations to which the kinetic equation reduces. 

Motion of a monatomic single-component gas is considered between infinite parallel 
planes x = +-d/2, due to longitudinal pressure and temperature gradients. The state of the 
gas is assumed slightly perturbed, and therefore, described by a distribution function negli- 
gibly different from a Maxwell function. Fully diffuse scattering of the gas molecules by 
the channel walls is taken as boundary conditions. The S-model of the kinetic equation [7] 
is converted into a system of two linear integral equations for the heat flux density q and 
the macroscopic gas velocity U. This procedure is described in detail in [I0], hence it is 
sufficient here to present just the final result which has the form 
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the argument of the function Jn is (6Ix -- s[); q is the coefficient of dynamic gas viscosity; 
Po, To, gas pressure and temperature at the center of the channel for z = 0; and k, Boltz- 
mann' s constant. 

In order to establish the connection between the rarefaction parameter 6 and the number 
Kn, it is necessary to write the expression for q. In particular, for the model of solid 
spherical molecules 

(3) /, 5 - -  = Kn- i .  

System (1) d e t e r m i n e s  l o c a l  v a l u e s  o f  t h e  m a c r o s c o p i c  gas  v e l o c i t y  and t h e  h e a t  f l u x .  How- 
e v e r ,  t h e  n u m e r i c a l  Im and t h e r m a l  Iq  f l u x e s  ave raged  o v e r  t h e  c h a n n e l  s e c t i o n  a r e  o f  p r a c -  
t i c a l  interest: 
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where the the~nnodynamic forces have been selected in the form [ l ]  

T 
X m = - - k v ,  X q = - -  T--~" (5) 

The Onsager reciprocity relationship is valid for the averaged kinetic coefficients 
Ill], i.e., 

tmq = Lqrte, (6) 

It is convenient to introduce dimensionless quantities for numerical computations, which are 
related to the kinetic coefficients by the following: 
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where according to (6) 
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There exists a relationship between the fluxes Im, lq and the functions ~i, ~= 
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An i m p o r t a n t  p a r f i i c u l a r  c a s e  i s  t h e  f i r s t - o r d e r  s t a t i o n a r y  s t a t e  when t h e  t e m p e r a t u r e  
g r a d i e n t  i s  m a i n t a i n e d  c o n s t a n t  and t h e  a p p r o p r i a t e  p r e s s u r e  g r a d i e n t  i s  e s t a b l i s h e d  i n  t h e  
sys t em [] 1]. T h i s  phenomenon,  c a l l e d  t h e r m o m o l e c u l a r  p r e s s u r e ,  i s  c h a r a c t e r i z e d  by t he  

(9) 
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TABLE 1. Numerical (Gp, GT) and Thermal (QT) Fluxes for Two 
Statistical Models 

0,01 
0,1 
0,5 
1,0 
5,0 

10,0 

S mod. S rood. BGK 

Ivarlat. numer. D] 

3,0517 ,0519 3,0489 
2,0342 ,0397 2,0314 
1,6144 ,6147 1,6017 
1,5534 ,5541 1,5389 
2,0029 2,0080 1,9883 
2,7748 2,7863 2,7638 

m'od. s rood. I BC;K 
arlat, namer. ; [1] 

/ 

1,2469 t !,2470 1,2353 
O, 7283 | O, 7328 0,6744 
0,4629 m 0,4630 0,4088 
0,3653 |0,36,~ 0,2953 
O, 1633 | O, 1642 O, i 137 
0,0970710,0983, 0,0655 

qT 
S rood. S rood. BGK 
varhat, numer. [1] 

0,8979 0,8979 0,7230 
0,5400 0,5407 0,4401 
0,3189 0,3189 0.2521 
0,2338 0,2339 0,1757 
0,08211 0,08225 0~ 
0,0453~ 0,04543 0,02323 

absence of a complete number flux averaged over the channel section [ I-6], i.e., I m = 0. 
Then there follows from (4), (5), (7), and (9) 

+]/.0 

�9 ~ P dT Gp 
--I12 

Therefore, the system of integral equations (I) must be solved to evaluate fluxes (9) 
and the index of thermomoleeular pressure (I0). 

(10) 

1. Krylov--Bogolyubov Numerical Method 

This method [8] consists of using special quadrature formulas to reduce the integral 
equation to a system of algebraic equations. 

Because of the symmetry of the problem, it is sufficient to consider the range of inter- 
actions (0, I/2). Let xo, x~, .... x n be points dividing this interval, where xo = 0 and 
x n = I/2. Then system (I) can be written in the form 

n--I 
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The q u a n t i t y  u i n  B has  t h e  f o l l o w i n g  form a c c o r d i n g  to  (10) 

n - - I  

y'-- - -2  ~ ,l(x,+lz~)Axh. Axk= Xh+l--Xk. 
k = O  

(12) 

(13 )  

For the best convergence of the method, the division points are selected so that the inter- 
val (Xk, Xk+x) would diminish with increasing k. This is due to the rapid change in the 
functions ~i near the channel surface. 

2. Galerkin Method [9] 

This method assumes the selection of a system of base functions. The symmetry of the 
problem requires that these functlonsbe even, e.g., {x 2k} (k = 0, I .... ). It is possible 
to limit oneself to the following approximation [6] 

f a + Ox = ] 

Such a form f o r  t h e  v e c t o r  ~ i s  v a l i d  i n  t he  a p p r o x i m a t i o n  o f  a c o n t i n u o u s  medium and 
i s  a s o l u t i o n  o f  the  N a v i e r - - S t o k e s  and h e a t - c o n d u c t i o n  e q u a t i o n s .  

S u b s t i t u t i o n  o f  (14) in  sys t em ( I )  y i e l d s  a r e s i d u a l  o f  the  form 
R=~--Ak--B. (15) 

The constants G, b, c are determined from the orthogonallty conditions of the residuals to 
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Fig. I. Velocity profiles in channel 
sections: dashed curves) Poiseuille 
stream velocity profile; dash-dot 
curve) for thermal creep; solid curve) 
total velocity profile; I-4) ~ = 0. I; 
1 .0 ;  5 . 0 ;  10.0.  
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Fig. 2. Poiseuille flux (a) and thermal creep (b) as a 
function of the gas rarefaction parameter &: I) Maxwell 
sphere (Monte carlo method [4]): 2) S-model; 3) BGK [I]; 4) 
Maxwell molecules (third approximation of the half-space 
moment model [5]); I) Ha; II) Ar; llI) He [13]. 

the selected base functions, i.e., 

+1/2 +ti2 +1/2 
( ( .I 

--I/2 --112 --1/2 

where 

E~=(I  0); E2 ---- (x= O); E3=(O 1). 

(16) 

The magnitudes of the fluxes Im, lq and the thermomolecular pressure index y are evaluated 
after (14) has been substituted into (9) and (10). 

Numerical computations were performed on a BESM-6 computer. Confirmation of the conver- 
gence of the Krylov--Bogolyubov method showed that the error in calculating the macroscopic 
quantities for n = 24 is less than 0. ]% for any values of 6. Hence, the numerical solution 
can be taken as a standard in comparison with other approximate solutions. 

Results for dimensionless Poiseuille flow Gp, thermal creep GT, and the heat flux by 
heat conduction QT obtained by the numerical and variational methods, as well as the data 
from []] for the BGK model are presented in Table I. It is seen that the maximum relative 
deflection of the variational from the standard solution for ~ = I0 does not exceed 1.5%. 
The main disadvantage of the Galerkin method is that it is difficult to use to calculate the 
local values of the macroparameters, while its advantage is a smaller expenditure of machine 
time. 

It follows from a comparison of results for different models that the divergence in Gp 
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reaches I% for ~ ~ 2, 31% in G T at ~ = I0, and 49% in QT for 6 = I0. This discrepancy is 
explained by the fact that the BGK model does not permit description of the processes due to 
simultaneous gas viscosity and heat conduction. The results may be refined if problems of 
Poiseuille flow and thermal creep are solved in isolation by selecting different collision 
parameters in the BGK-medel [12]. However, even in this case the discrepancy in the heat 
flux QT reaches 15% for the different models. 

The velocity profiles of Poiseuille flow up/v, the thermal creep UT/T , and also the 
total velocity profile 

u = ~ u~ + u ,  
T v �9 (17) 

are presented in Fig. I, hence all the quantities are referred to the logarithmic pressure 
and temperature T gradients, and are measured in the units (m/2kTo) t/2. It is interesting 

to note that the total gas flux at both the center and at the walls of the channel has a 
direction dependent on the rarefaction parameter ~. As ~ increases the contribution of the 
Poiseuille flux increases at the center of the channel and of thermal creep at the circum- 
ference. 

Different theories for Poise~ille flow (Fig. 2a) and thermal creep (Fig. 2b) are com- 
pared in Fig. 2. Reasons for the occurrence of the results are discussed at the beginning 
of the paper. 

Comparing theory with ~periment for Poiseuille flow [13] (Fig. 2a) is of interest. 
Satisfactory agreement is observed for ~ > I. The discrepancy both between the experimental 
data for different gases and between theory and experiment for d < I is due firstly to the 
difference in the accommodations of the gas molecules at the channel walls, and secondly to 
the finite dimensions of the experimental channel. 

NOTATION 

Kn, Knudsen number; d, spacing between plates; P, pressure; T, temperature; ~, logarith- 
mic pressure gradient; T, logarithmic temperature gradient; U, macroscopic gas velocity; q, 
heat flux; n, coefficient of dynamic viscosity; l, mean free path; Im, numerical gas flux 
averaged over the channel section; lq, gas heat flux averaged over the channel section; y, 
universal index of the thermomolecular pressure difference; up, Poiseuille flux velocity; 
and UT, thermal creep rate. 
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